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The various approaches to nonequilibrium statistical mechanics may be sub- 
divided into convolution and convolutionless (time-local) ones. While the for- 
mer, put forward by Zwanzig, Mori, and others, are used most commonly, the 
latter are less well developed, but have proven very useful in recent applications. 
The aim of the present series of papers is to develop the time-local picture 
(TLP) of nonequilibrium statistical mechanics on a new footing and to consider 
its physical implications for topics such as the formulation of irreversible ther- 
modynamics. The most natural approach to TLP is seen to derive from the 
Fourier-Laplace transform C(z) of pertinent time correlation functions, which 
on the physical sheet typically displays an essential singularity at z = ~ and a 
number of macroscopic and microscopic poles in the lower half-plane 
corresponding to long- and short-lived modes, respectively, the former giving 
rise to the autonomous macrodynamics, whereas the latter are interpreted as 
doorway modes mediating the transfer of information from relevant to 
irrelevant channels. Possible implications of this doorway mode concept for so- 
called extended irreversible thermodynamics are briefly discussed. The pole 
structure is used for deriving new kinds of generalized Green-Kubo relations 
expressing macroscopic quantities, transport coefficients, e.g., by contour 
integrals over current~zurrent correlation functions obeying Hamiltonian 
dynamics, the contour integration replacing projection. The conventional 
Green Kubo relations valid for conserved quantities only are rederived for 
illustration. Moreover, C(z) may be expressed by a Laurent series expansion in 
positive and negative powers of z, from which a rigorous, general, and 
straightforward method is developed for extracting all macroscopic quantities 
from so-called secularly divergent expansions of ~(z) as obtained from the 
application of conventional many-body techniques to the calculation of C(z). 
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The expressions are formulated as time scale expansions, which should rapidly 
converge if macroscopic and microscopic time scales are sufficiently well 
separated, i.e., if lifetime ("memory") effects are not too large. 

KEY WORDS: Statistical mechanics; Liouville equation; irreversible 
processes; correlation functions; Green-Kubo relations; transport coefficients; 
non-Markovian processes. 

1. I N T R O D U C T I O N  

From experience, we know that the relaxation toward equilibrium of a 
closed macroscopic system held at nonequilibrium at some initial instant of 
time t o is well described by phenomenological relaxation or transport 
equations. Ready examples are the equtions of Boltzmann or Enskog in 
kinetic theory, various master equations, the hydrodynamic equations, 
Fick's and Fourier's laws, and the equations of chemical kinetics. 
Equations of this kind, called macroscopic evolution equations (MEE) in 
the following, provide us with a reduced or contracted description, which is 
closed, at the phenomenological level at least, of macroscopic systems in 
terms of just a few observables (the five hydrodynamic fields, for example) 
instead of the overwhelmingly large number of microscopic degrees of 
freedom. 

Ever since Boltzmann, nonequilibrium statistical mechanics (NESM) 
has strived after deriving and generalizing the equations of macrophysics 
from those of microphysics in order both to define precisely and extend 
conveniently the region of validity of those MEE and also for revealing the 
origins of their (approximate) validity. Moreover, NESM has also 
attempted to clarify the role of fluctuations in the relaxation process, to 
provide a microscopic foundation of irreversible thermodynamics, and, as 
an ultimate goal, to elucidate the connection between the reversible and 
deterministic laws of physics and the second law of thermodynamics. 

Many approaches have been developed for solving these tasks, the one 
of most elegance and common use certainly being the Mori-Zwanzig 
method(1 4) and generalizations (5-71 thereof based on the introduction of 
projection operators into the theory. This way, one obtains a systematic 
method for eliminating the so-called irrelevant variables in favor of the 
relevant ones, which are the observables of physical interest~ Close to 
equilibrium, i.e., in the linear case, NESM based on this approach acquires 
a very satisfying, essentially closed form, which is characterized by the 
following features: 

1. The MEE are nonlocal in time, i.e., they are obtained as first order 
Volterra integrodifferential equations, which is manifest by their containing 
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a time convolution. This may be viewed as a direct consequence of 
causality and is usually interpreted as a memory, so that the 
phenomenological MEE, which are autonomous (memory-free) equations, 
are said to be generalized. As a consequence, the phenomenoiogical trans- 
port kernels 2 are replaced with "frequency"-dependent ones. 

2. The latter are given explicitly by generalized Green-Kubo 
relations relating them to correlation functions of microscopic fluxes for- 
mulated in terms of a projected Hamiltonian dynamics. 

3. In the Heisenberg picture ~4'6) one obtains a generalized Langevin 
equation describing the time evolution of observables, including their fluc- 
tuations. There exists a fluctuation-dissipation theorem of the second kind 
relating the random forces to the generalized transport kernels. 

4. Irreversible thermodynamics is generalized in the sense that the 
fluxes are expressed in terms of the whole history of the forces. As in 
rational thermodynamics, (8) the usual notion of the thermodynamic state of 
the system has to be modified by including this history. 

All of these features are a direct consequence of the time convolution 
contained in the MEE, so that in the following we will call the above 
approach the convolution picture (CP) of NESM. Besides the many attrac- 
tive aspects of the CP, there are also some serious drawbacks. In fact, the 
projection operators are not uniquely defined, which may lead to 
ambiguities in approximations. This is particularly true in far from 
equilibrium (nonlinear) situations, where the projection method gets rather 
complicated. Moreover, the pertinent kernels are not given in terms of 
Hamiltonian dynamics (see point 2 above), which renders more difficult the 
application of familiar many-body techniques in their evaluation. For the 
same reason, the generalized Green-Kubo relations do not relate the trans- 
port kernels directly to measurable quantities such as ordinary time 
correlation functions. 

There is a different approach (9 29) to NESM, called the convolutionless 
or time-local picture (TLP) in the following, leading to equally closed, 
exact MEE and generalized Langevin equations, which are first-order d/f- 
ferential equations with respect to time. In general, these equations are 
nonautonomous ones, i.e., they also contain a memory, which manifests 
itself in the time dependence of the corresponding generalized transport 
kernels (see Section 2 for details). 

2 Since the notion of the MEE is used for a wide variety of equations, we introduce the notion 
of the transport kernel to denote quantities such as ordinary transport coefficients, collision 
or master operators, and the like. 
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There are mainly two routes for developing the TLP approach; 
one(ll 2o) is more concerned with the general theory also being based on 
the projection operator method. Typically, one starts from the CP and 
carries out a procedure called memory renormalization ~4 ~6~ to end up 
with the TLP. This is also the route followed by Balescu in kinetic theory 
(see w in Ref. 30). 

Another route, (23 29) concerned more with applications, is based on the 
observation that there are typically two ansatzes used in calculating time 
correlation functions. One, called the inversion or memory function 
method, starts from the Laplace transform of the correlation function and 
expresses this as the inverse of something, which is essentially the memory 
kernel 3 or the matrix of "frequency"-dependent transport kernels. This 
corresponds to the CP. The other one, corresponding to the TLP, is called 
the exponential or cumulant expansion method and consists in starting 
directly from the correlation function in time representation, which gets 
expressed as the exponential of something that is directly related to the 
matrix of the time-dependent generalized transport kernels of the TLP. 
This method has been applied to a variety of problems, ranging from line 
shape problems (27 29) to  the study of systems with disorder. (26'31) Although 
both methods lead to identical results in principle, they do not do so in 
approximations and the general result of the examples treated is that in 
approximations the TLP is superior to the CP in many cases. 

Similar conclusions can also be drawn in problems closely related to 
NESM, such as obtaining reduced descriptions (MEE) in deterministic 
systems exhibiting chaos and in deriving generalized Fokker-Planck 
equations for stochastic differential equations of Langevin type with mul- 
tiplicative colored noise. Projection operator methods of both the 
convolution ~32) and convolutionless ~33'34) type and in particular the 
cumulant expansion method135 '36) corresponding to the TLP are quite com- 
mon there, the latter having been advocated mainly by F'ox (37'38/ (see also 
Ref. 39). The main achievement here is that the kernel of the generalized 
Fokker-Planck equation is obtained as a systematic series expansion in 
powers of the correlation time tc of the noise, the coefficients being given 
explicitly in terms of ordered operator cumulants. 

Actually, the expansion parameter is not t C itself, but instead the ratio 
between the time scales given by t~. and the overall relaxation time tR. 
Therefore, we will call such expansions time scale expansions (TSE). The 
great advantage of TSE is that in practical cases they are rapidly con- 
verging, since microscopic and macroscopic time scales usually are well 
separated. 

3 In field theory this is just the self-energy or mass operator. 
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In NESM, the TLP is less advanced. The existing MEE and 
generalized Langevin equations obtained by the TLP projection operator 
methods(11 2o) are rather involved and share in an even more serious way 
the drawbacks of the projection method mentioned above, particularly in 
far from equilibrium situations. Yet there exist systematic expressions for 
the kernels of the MEE in the form of ordered cumulant expansions 
corresponding to a series expansion in powers of a small parameter, usually 
the density or the interaction strength. In many systems of interest, 
however, either there is no small physical parameter at all or the series 
have to be summed at least partially up to infinite order, which is not sim- 
ple in the existing cumulant expansions. Therefore, it is desirable, and will 
be done in the present paper, to develop a TSE for NESM, too, since the 
corresponding expansion parameter ~ = tSt  R is always small in realistic 
situations independently of the density or the interaction strength. 

These, however, are technicalities, the question of using CP or TLP 
being more deeply rooted than just in, for example, working in time or fre- 
quency representation of the correlation functions in order to get optimized 
expansions. The point of main interest is that under rather general con- 
ditions CP is fully consistent with the existence of an autonomous 
macrodynamics at sufficiently late (macroscopic) times, memory effects 
playing a role only during an initial (microscopic) period of time (see Sec- 
tion 2 for details). 

Now, the very existence of an autonomous macrodynamics also 
should have a number of important physical consequences for the theory of 
fluctuation and dissipation and the construction of irreversible ther- 
modynamics, which cannot be read off so easily from the CP. Instead, the 
TLP provides in many respects a different view of NESM and allows one to 
look at many of its subjects under a different angle, some of the most 
pronounced features of which are as follows. 

1. In the TLP approach the existence of an autonomous 
macrodynamics is most clearly exhibited in that at macroscopic times the 
exact MEE become autonomous, with transport kernels independent of 
time or frequency. 4 This is to be contrasted with point 1 above and is dis- 
cussed further in Section 2. 

2. Generalized Green-Kubo relations can be derived (see Sec- 
tion 4.1) expressing the transport kernels of the autonomous MEE and the 
parameters of irreversible thermodynamics in terms of the pysical (i.e., non- 

4 It is to be no ted  tha t  the T L P  t r anspor t  kernels  fully con ta in  all of the so called non-  

M a r k o v i a n  or m e m o r y  effects of the C P  and  therefore somet imes  are cal led memory  renor-  
malized.  
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projected) time correlation functions, including exactly the so-called 
memory or non-Markovian effects. 

3. The generalized Langevin equation can be formulated (see 
forthcoming paper) consisting of an autonomous  deterministic part and a 
random force corresponding to stationary colored noise, which, however, is 
not orthogonal to the observables, the orthogonality observed in the CP 
obtaining only in the white noise limit (complete separation of time scales). 

4. Irreversible thermodynamics is reobtained in its classical form with 
respect to the flux-force relation and the notion of the state, the conjugate 
thermodynamic forces figuring as memory renormalized ones. 

Astonishingly, only a few of these findings have been obtained before, 
so that we think it worthwhile to devote this and the following papers to a 
more or less complete development of the time-local view of NESM and 
irreversible thermodynamics for both the linear and nonlinear theory, 
taking full account of so-called non-Markovian or memory effects. 

The present paper is concerned with linear theory only and mainly 
covers points 1 and 2 of the above program. In Section 2, we present some 
basic relations between the CP and TLP approaches, which partly were 
given earlier. (4~ in Section 3 we study the structure of the Fourier- 
Laplace transform of the pertinent correlation functions on the physical 
sheet of its Riemannian surface, which, we feel, is the most natural basis for 
the TLP approach to NESM (see Section 3.4 for a discussion). 

Having established the analytical structure of the correlation functions 
on the physical sheet, we then in Section 4.1 derive the generalized Green- 
Kubo relations announced above and by means of this obtain the TSE of 
the macroscopic parameters of the theory (see Section 5). These are valid in 
"frequency" representation, corresponding expressions in time language 
being given in Section 6. A short summary and some concluding remarks 
are given in Section 7. 

2. M A C R O S C O P I C  EVOLUTION E Q U A T I O N S  IN 
LINEAR T H E O R Y  

Let us consider a closed system of N particles described 
macroscopically by a set of observables A1,..., A~ obeying the equations of 
motion (Heisenberg picture) 

A k ( t )  = iLAk ( t ) ,  k =  1 ..... n (2.1) 

where the Liouvillean L is defined by 

L . . . .  i {H, . . . }  or L . . . .  (1 / t i ){H, . . . }  (2.2) 
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H denoting the Hamiltonian of the system, {- } the Poisson bracket, and 
[ . ]  the commutator  for the classical and quantum mechanical cases, 
respectively. The system is assumed to be in a nonequilibrium state given 
by an ensemble p(to) at an arbitrary time to for which it is convenient to 
choose (cf. Ref. 6) 

p(to)= Z l[exp(-f lH)- 2. A], 2"A= ~ 2kA~ (2.3) 
k = l  

Z being the normalization factor. 
From the macroscopic point of view we are interested in the time 

evolution of the ensemble averages ak(t) of the observables A~(t), k= 
1 ..... n, with respect to p(to). Assuming that p(to) describes a situation suf- 
ficiently close to equilibrium, one obtains from linearizing Eq. (2.3) and 
proposing that AkVk is conveniently defined so that its equilibrium average 
is zero, 

a(t) = - c ( t -  to) ,~(t0) (2.4) 

C being the matrix of correlation functions or correlation matrix 

C(s)=(A(s ) IA+)=(A]e  'L" IA +) ,  s = t - t o  (2.5) 

We introduced Liouville space notation, (42) the scalar product between any 
two quantities B, C being defined as 

and 

(g lc )=-~ .  dl...dNBC*po 

fo  ,c # 1 .v (B] C )  = T r  dxBpoC Po 

in classical and quantum mechanics, respectively, where B, C=B, 
C(1 ..... N) are phase space functions in the former and operators in the lat- 
ter case. 

Note that C(s) as given by Eq. (2.5) is an n • n matrix. This means 
that we always have to consider A as a column and A + as the row matrix 
A + =  {A*,..., A*}, so that A + is the Hermitian conjugate of A. With this 
definition we find that the variance matrix of the equilibrium fluctuations 

F : =  C(0)=  (A IA + ) (2.6) 

822/46/I-2-23 



356 

is always a Hermitian matrix. In terms of F we have 

a = - F 2  

so that 
a(t) = + C ( t -  to) F - la ( to )  

2.1. Evolution Equations in CP and TLP 

Der 

(2.7) 

(2.8) 

I(t)  = - O ( t )  C -l(t) 

Introducing the frequency matrix (2, 

( 2 = ( A [ L ] A + )  F - I = i C ( O ) F  1 

we may rewrite I(t) as 

where (cf. Ref. 24) 

and 

I ( t )  = i~  ~- /ir(t) (2.12) 

rr(f)= -I~ dt' (~i~(t')l~ + ) C-'(t ')  

~t #( t )  = iUL - iI(t) ] A( t )  

Equation (2.9) represents a set of n, in general nonautonomous, differential 
equations. On the other hand, the Mori-Zwanzig theory yields the retar- 
ded evolution equations given by the set of integrodifferential equations 

dt' M( t ' )  C(t - t') d ( t )  = - 

fo = - is  - dr' Mir(t ') C ( t -  t') (2.14) 

(2.10) 

(2.11) 

(2.13) 

where 

C(t) = - I ( t )  C(t) (2.9) 

As seen from Eq. (2.8), the evolution in time of the ensemble averages 
a(t) is completely specified in terms of C ( t - t o ) .  Hence, replacing t - t  o 
with t, we may restrict ourselves to the study of C(t). Instantaneous or local 
in time evolution equations for C(t) are readily obtained as 
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where 

mir(t)  = (Ai  Qe ioCQtQ i,i+ ) F - I  

Q = I - P ,  P = I A + ) F - I ( A I  

(2.15) 

(2.16) 

In the present paper we investigate the above evolution equations for 
systems where two (or several) different time scales tR, t c exist, 

g~l= dt IIM(OII (2.17a) 

t,. = tR dt t IlM(t)ll (2.17b) 

where 

= t~,/tR = 2o dt t IlM(t)l] (2.17c) 

is not too large, and M(t)  decays sufficiently rapid, namely 

M(t) = 0, t ~ t ~  (2.18) 

Note that Eq. (2.18) is a symbolic notation that excludes algebraic 
decay, which has no time scale. This might seem a severe restriction, since 
in many cases an algebraic decay is the rule. However, as briefly sketched 
in Section 5.3, most of the results of the present paper can be modified to 
cover the latter case. 

Hence, we restrict the present paper to studying the nonalgebraic case, 
defined by Eq. (2.18). 

We note that both Eqs. (2.9) and (2.14) are exact. They are reversible 
and yield a decaying solution for both t--* +oo and t ~  - o o  (cf. Fig. i). 
Moreover, both equations are nonautonomous,  since time t appears 
explicitly, and hence display a memory behavior. 

For discussing this point it is useful to consider the TLP  equation for 
a(t), i.e., 

dr(t) = - I ( t -  to) a(t) (2.19) 

which corresponds to Eq. (2.9). It is customary to call u = t - t o  the age of 
the state, because u is the time elapsed since the initial preparation of the 
system. Then Eq. (2.19) shows explicitly that knowing a(t) at an instant of 
time t is not sufficient for determining the future evolution of a(t), since I 
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Fig. 1. Schematic representation of ( - - )  the correlation function C(t), (--)  its macroscopic 
parts C I+)(t) and CI-)(t), and ( . . - )  the microscopic part -C~m)(t) representing the initial 
slip. The case of a single observable is considered, where AI+ ) is a scalar. 

still depends on the age u. Thus, one may say that the evolution of a(t) is 
still influenced by the initial preparation of the system, i.e., we observe a 
memory behavior at these times. 

2.2. Autonomous Macrodynamics in TLP 

Under certain physical conditions (see below) it may well happen that 
this memory fades away with increasing age u of the system. This means 
that 

lira I(t)=: I t-+l (2.20) 

exists. I ~§ determines the decay at macroscopic times if only I(t) reaches 
its plateau value I t +) after some microscopic time to, i.e., symbolically, 

I ( t )= l  I+), t>>t~ (2.21) 

and we note that in general I(t) but not I/+~ depends on the initial 
preparation of the system. 

For investigating the consequences of Eq. (2.21) we introduce C t+) 
(C t-)), which is the solution of the autonomous equation 

d "t -+ )(t) = - I  t -+ ~C t -+ )(t) (2.22) 
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for all times - co < t < 0% and split 

C(t)  = Ct + )(t) + c(m)(t) ,  

C(t)  = C ( - ) ( t )  -~- c(m)(t),  

359 

t > 0  
(2.23) 

t < 0  

Then, choosing the initial condition so that C/+l fits the wing of C(t )  for 
t -~ o% i.e., 

and hence 

C(+)(0) =: A<-+)= lim [exp(I(+-)t)] C(t) (2.24) 
t ~ + o O  

C(-+)(t) = [exp(-I(-+)t)] A(-+~ (2.25) 

correlation matrix C(t), where C (") represents the initial slip containing the 
decay of transients (cf. Fig. 1). 

As a consequence of Eqs. (2.23), (2.26), and (2.8) we also note that in 
a sufficiently aged state the time evolution is completely determined by the 
macroscopic branch C (+) of C, i.e., we write 

a = a ( + )  -I- a (m) 

a I+ I(t) = C ~+ t(t - to) F - l a ( t o )  

(2.27a) 

(2.27b) 

so that a (+~ obeys the autonomous equation 

~i (+  / = _ i ( +  )a  t + ) 

and 

(2.27c) 

a ( t ) = a l + l ( t ) ,  t - t o > > t  ,. 

Equations (2.22) and (2.27c) define an autonomous macrodynamics, which 
obviously is characterized by the fact that the rate of change ~i(+)(t) 
[d~(+)(t)] is related to a(+)(t)  [C(+~(t)] via a quantity I I+l that is indepen- 
dent on the history of the system or the age of the state considered. Hence, 
Eqs. (2.22) and (2.27c) are memory-free equations. 

we find as a consequence of Eq. (2.21) 

c ( m l ( t ) = O ,  Itt >> t, (2.26) 

Consequently, we may call C (-+~ the macroscopic branches of the 
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2.3. A u t o n o m o u s  IVlacrodynamics in CP 

The predominance of the autonomous macrodynamics (AM) at late 
times as expressed by Eqs. (2.23), (2.26), or (2.27) is an immediate con- 
sequence of the plateau property (2.21) of I(t). This was simply postulated 
and might seem rather artificial in view of the retardation contained in the 
CP equations (2.14) at all times. 

This point is elucidated best by studying directly the solution of 
Eq. (2.14). As shown in Section 3, under the conditions formulated with 
Eqs. (2.17) and (2.18) the solution of Eq. (2.14) may be written as in 
Eq. (2.23), i.e., C(t) is decomposed into C (+) and C (m) corresponding to the 
AM and the decay of transients, respectively. 

In TLP the transition from the memory-retaining behavior at small t 
to the AM prevailing at large t is expressed by Eq. (2.21). In CP this trans- 
ition is reflected more implicitly by the fact that Eq. (2.14), which is of 
Volterra type, changes for large t into the autonomous integrodifferential 
equation obeyed by C (+) 

~I+ l(t ) = _ dt' M(t') C(+)( t -  t') (2.28) 

which is of Fredholm type. 
Equations (2.25) and (2.28) are the actual macroscopic evolution 

equations of TLP and CP, respectively, since they describe the relaxation 
of the system at all macroscopic times. The necessary initial condition for 
both equations is furnished by Eq. (2.24), so that C(+)(t) fits the wing of 
C(t) for t ~ oo. The connection between the two pictures is established by 
the nonlinear integral equation 

i (+/= dt M(t) exp(I(+)t) (2.29) 

which is obtained by introducing Eq. (2.25) into Eq. (2.28). Thus, knowing 
M(t), one may determine I (+), which together with ~(+) is the only quan- 
tity of macroscopic interest. 

2.4. Remarks on CP and TLP 

Equations (2.22) and (2.28) may be considered as, respectively, the 
instantaneous and retarded representation of the same behavior, namely 
the simple exponential decay given by Eq.(2.25). Thus, from the 
macroscopic point of view, M(t) may be considered as an intermediary 
quantity from which we may determine I ~+) and 3 ~+), which are the only 
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quantities of macroscopic interest. The two different mathematical for- 
mulations (2.22) and (2.28) of the same decay law (2.25) differ in the 
microscopic expressions for their kernels I (+) and M(t). Using Eq. (2.17), 
we find from Eq. (2.29) 

I (+)= dtM(t)+O(tjtR) (2.30) 

so that I (§ is different from the so-called Markovian limit of CP by correc- 
tion terms usually called memory or non-Markovian effects. 

These result from the finite duration of microscopic events, so that we 
shall call them lifetime effects in the present paper. 

Hence, the difference between I (+) and M(t) consists in the con- 
tribution of lifetime effects. Typical such effects are produced by the 
influence of the surrounding medium on a single binary collision. In a 
dilute but strongly inhomogeneous system this is mainly a mean field effect 
contained in the Vlassov potential. These in-medium effects enter into I (+) 
and M(t) in different ways. In particular, it has been shown recently (44) that 
I (+) is given by a completed binary collision taking place in the Vlassov 
potential, whereas such a physical interpretation is not possible for M(t). 
This example might be generic. In fact, as we have seen, the correlation 
matrix C(t) is composed of two physically different contributions C (+) and 
C (m) corresponding to the decay of macroscopic modes and of transients. 
The decay of C (+) is governed by the matrix of the physically relevant 
decay constants I (+). Consequently, the microscopic events entering I (+) 
pertain to the decay of macroscopic modes only, whereas M(t) still con- 
tains the information on the decay of transients, 

The connection between the two pictures is provided by Eq. (2.29), so 
that one can of course start out from a microscopic analysis of M(t) to end 
up with I (+). An alternative approach may be based on the generalized 
Green Kubo relations to be presented in Section 4, which relate the 
macroscopic parameters in a more direct way to the microscopic 
(Hamiltonian) dynamics of the system so that the calculation of the 
memory kernel M(t) with its projected dynamics is avoided. 

3. ANALYTICAL PROPERTIES OF L?(z) ON THE 
PHYSICAL SHEET 

Let us consider the Fourier-Laplace transform of the correlation 
matrix C(t), i.e., 

C(z)= dtei~'C(t), I m z > 0  (3.1a) 
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the inverse transformation being given by 

cut- f e-'z'etzt 
- e 2 ~  

(3.1b) 

as usual, C representing a straight line parallel to the real axis, which lies 
above all of the singularities of C(z). 

It is customary to introduce 

C(z)-- {AI R(z) JA + ) (3.2) 

the resolvent R(z) being 
R(z) = i/(z - L) 

which is defined for all z with Im z ~ 0. 
We have C(z) = for I m z >  so = C(z) 0, but not for Im z < 0. Under 

suitable physical conditions ~(z) has a cut along the real axis and can be 
analytically continued beyond this cut from both below and above the real 
axis. The continuation of C(z) [cf. Eq. (3.1a)] into the lower half-plane 
defines the physical sheet of the Riemannian surface of ~ and we now study 
the properties of this C(z) for Im z < 0. 

3.1. Analyt ical  Cont inuat ion 

The analytical continuation of the resolvent R(z) is one of the major 
topics dealt with in the theory of subdynamics developed by the Brussels 
school, which is concerned mainly with providing a microscopic basis for 
the second law. Fortunately, for the purpose of the present paper, we may 
content ourselves with considering only some matrix elements of the 
resolvent, i.e., Eq. (3.2), corresponding to the pertinent correlation matrix 
C(z), so that the most difficult problem of continuing the full resolvent is 
avoided. 

Moreover, the still difficult problem of deriving the analytical proper- 
ties of ~'(z) directly from the microscopic dynamics is sidestepped here by 
tracing these properties back to the properties of the "memory" kernel 
M(t), which are assumed to be known; i.e., we start from the convolution 
picture (CP) and model M(t)  by one of the conventional ansatzes 
(exponential, Gaussian, etc.) obeying Eq. (2.15). Although the simplest one 
in the present context, the exponential ansatz [-see (A1)] is known to be 
unrealistic in the sense that it leads to divergent higher order sum rule 
expressions. (43~ To avoid this drawback we shall assume M(t)  to be given 
by a Gaussian behavior and discuss the generality of the results in Sec- 
tion 3.4, 



Time-Local Nonequilibrium Statistical Mechanics 363 

For  a Gaussian behavior of M(t )  the transform 

3~(z) := dt eiZ'M(t) (3.3) 

exists for all z r ov and is analytic for these z. Using Eqs. (2.14) and (2.6), 
we find for Im z > 0 

i 
C(z) - F (3.4) 

z + iffl(z) 

The analytical continuation of C is now trivial; we obtain it by simply 
taking (3.4) as the definition of C(z) valid for all z ~ oo. What  we are 
interested in are the singularities of C(z), which all lie in the lower half- 
plane. We note first that 72r has an essential singularity at z = oo. In fact, 
using Eq. (2.13b), we find M ( z ) ~ ( i / z ) ( A l  Q IA+) ,  I m z > 0 ,  Iz[ ~ ,  
whereas from Eq. (3.3) we obtain IIM(z)ll ~ ~ for I m z < 0  and Iz[ ~ ~ .  
Now, if ~r(z) has an essential singularity at z = ~ ,  so has z + i~I(z). Con- 
sequently, from Picard's theorem we may conclude that C(z) also has an 
essential singularity at z = ~ .  The existence of this essential singularity is 
connected with the sum rules (431 obeyed by the Four&r transform of C(t) 
and is the main difference from the exponential ansatz, where this 
singularity is not obtained. 

3.2. The Case of  a Single  Observable  

For the discussion of further singularities of (~ we first consider the 
case that our set A consists of a single variable only. Then, M(z) is a scalar 
instead of a matrix and the singularities of C follow from the dispersion 
relation 

iz = ~ ( z )  (3.5) 

the solutions of which are given in the Appendix for both the exponential 
and the Gaussian case, the exponential ansatz being included since it can 
be treated explicitly and the results may be expected to carry over at least 
qualitatively to other ansatzes, too. It is shown that Eq. (3.5) has just two 
solutions zM and Zm, where zM = O(1/tR) and z m = O(1/t~,). Hence, we con- 
clude that C(z) is analytic everywhere except for z =ZM,m, where it has 
poles, and z = 0% where it has an essential singularity. In the following we 
shall call the pole at zM the macroscopic pole, whereas the remaining two 
singularities are called microscopic ones. 
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The reason for doing so is that upon introducing this result into 
Eq. (3.1b), we find by using the theory of residua that for sufficiently large 
times it is only the contribution of the macroscopic pole that survives in 
C(t). This is the justification for splitting C(t) as in Eq. (2.23) and shows 
that C(+)(t) is just the contribution of this pole, i.e. (see Fig. 2, below) 

C I+)(t) = e i:Mtr (3.6a) 

where the pole strength 

d ~ 
r = [1 + iM'(ZM)] 1, M'=--~z M (3.6b) 

is essentially the residuum of C(z) at z = ZM and we are led to the iden- 
tifications 

i(+ i= iZM = ~I(ZM) (3.7) 

A ( + t = r  (3.8) 

3.3. Severa l  Observab les  

For discussing the analytical properties of C(z) in the general case 
where A = {A1,..., A,} we need the spectral resolution of Eq. (3.4). For this 
purpose we introduce the eigenvectors Ek(z) of ~r(z), i.e., 

~l(z) E~(z) = mk(z) E,(z) ,  k = l ..... n (3.9) 

mk(z) being the eigenvalues and each E~(z) is to be understood as a 
column matrix with matrix elements i Ek(z), i= 1,...,n. Moreover, we 
introduce the corresponding eigenprojectors Pk(z), which are n by n 
matrices with matrix elements 

E~(~) = [Pk(z)] i , j= EJk(z), i, j 1,..., n 

so that 

and 

ff/i(z) Pk(z) = mk(z) Pk(z) 

Pk(z) Pt(z) = 6k.lPk(z) 

(3.10) 

if _~r is a Hermitian matrix, which we shall assume in the following. Using 
Eqs. (3.10) and (3.11), we find the spectral resolution of C(z) given by 

iPk(z) (3.12) 
C(z) = ~ z + link(z) 

k = l  

(3.11) 
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so that the singularities of ~" are given by the solution of the n dispersion 
relations 

iz=mk(z), k = l  ..... n (3.13) 

Let us assume the m~(z) are given by Fourier-Laplace transforms of 
Gaussians or the like. Then, according to the Appendix and the discussion 
given in Section 3.2, we may conclude that Eq. (3.13) has just two solutions 
ZM,k and Zm.k for each k =  1,..., n. Therefore, for the special ansatz con- 
sidered, we find that besides the essential singularity at z = o% (~(z) has 
exactly n macroscopic and n microscopic poles, the contribution of the for- 
mer yielding [cf. Eq. (3.6a)] 

C~+)(t) = L e i:M~rH~ (3.14) 
k = l  

where I1 k = rkPk(ZM,k) and 

r k = [1 + im',(ZM,k)] 1 (3.15) 

Il~ being essentially the residuum of (~(z) at z = ZM.k. Comparing Eq. (3.14) 
with Eq. (2.25), we immediately find 

AI+)= L Hk (3.16) 
k - - I  

so that z/~+) is the sum of the residua Il~. 
A similar relation for I (+/ is not so easily established. The reason is 

that Hklllr k r  in general, since the eigenvectors E~(ZM,~)=: E~ are 
not mutually orthogonal. Therefore, we have to form a biorthogonal set by 
introducing the new vectors E~ which obey 

E~' Et = 0, k r l 

the dot denoting the scalar product. Now, we introduce the new projection 
matrices/3 k, where 

E P k ]  - - '  - i  ( 3 . 17 )  i, ] - -  EkEk 

and find by multiplying both Eq. (2.25) and (3.14) by/3k from the left that 

I ~ +)= i • ZM,kYPk (3.18) 

and 

P~AI+)=rkP~ (3.19) 
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Thus, we may say that I (+/ is a non-Hermitian matrix with eigenvalue 
equations 

i~+)Ek iZM.~Ek, p r l ( + l - -  ' --r = ~ k "  - IZM,kEk (3.20) 

the eigenvalues all being real. Note that we assumed M ( t )  to be Hermitian 
and 

f l ( Z  M,k ) E k = iZ M,k E k (3.21) 

Thus, the main difference between the matrices I ~ +) and 3~ is seen to be 
contained in the fact that the eignevectors E~ are obtained from 31(z) for 
different values of z = ZM,k, k = 1,..., n, whereas I (+) is a matrix independent 
of z, which yields immediately the corresponding eigenvalues and eigenvec- 
tors, which are the only quantities of physical relevance for large times. 
These considerations also show that the non-Hermiticity of I (+) is a direct 
consequence of 214(z) depending on z and hence of the existence of lifetime 
effects. 

In the above, we have assumed that M ( t )  is Hermitian, which 
corresponds to assuming s = 0  in Eq. (2.14). However, the general case 
may be treated in the same way by using a biorthogonal expansion already 
in Eq. (3.12). 

3.4. Physical Interpretations. The Doorway Mode Concept 

We have seen above that in typical physical situations C(z) is analytic 
everywhere except for some singularities situated in the lower half-plane. Of 
these singularities, the n macroscopic poles typically are situated quite close 
to the real axis and are separated by a gap from the microscopic poles, 
which lie a distance of order t c 1 further below in the lower half-plane of 
the physical sheet. 

In the examples considered in the Appendix we find that the number 
of microscopic poles is equal to the number of macroscopic poles, i.e., n~ 
This need not be the case in general. In fact, in order to satisfy higher order 
sum rules it often proves necessary to model M ( t )  by a sum of exponentials 
or Gaussians or the like. Then, in general one may conclude that more 
microscopic than macroscopic poles will occur. 

However, the detailed structure of the microscopic singularities is of 
no relevance to the results of the present paper. Of importance is only that 
for systems that can be modeled by memory kernels observing convenient 
decay properties one obtains macroscopic poles that are separated by a gap 
from the microscopic singularities. This gap reflects the existence of at least 
two different time scales and guarantees the existence of an autonomous 
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macrodynamics as expressed by Eqs. (2.23), (2.25), and (2.26). Moreover, 
the gap also allows the derivation of the generalized Green-Kubo relations 
given below. 

It is customary (43) to associate the poles of C(z) with modes. 
Obviously, then, the n macroscopic poles correspond to the long-lived 
collective modes of the system, the hydrodynamic modes, e.g., which are 
excited by the initial preparation of the system given by Eq. (2.3). Con- 
sequently, C ( § i or a ( § describes just the decay of these modes, so that in 
close analogy to the point of view taken in quantum field theory, we may 
identify ZM,~, k = 1 ..... n, with the complex energies and the pole strength 
H~ with the corresponding normalization constants of the "wave functions" 
of these modes, Hk (and hence A (+)) being different from 1 since the modes 
are not eigenstates of the Liouvillian of the system. This is an immediate 
consequence of the fact that L is a linear Hermitian operator or 
superoperator having real eigenvalues only, whereas the ZM,k are complex. 
Thus, the modes may be viewed as a kind of pseudostate of L, the connec- 
tion of which to real states such as p(to) being established in terms of H~ or 
~l+) 

In an isolated system the decay of these modes is due to their coupling 
with the extremely many irrelevant degrees of freedom which serve as a 
kind of reservoir. It has been suggested recently by Zeh (45) that the 
corresponding transfer of macroscopic information into the irrelevant chan- 
nels should proceed by way of a two-step procedure similar to the doorway 
state mechanism in nuclear physics. This suggests that the microscopic 
poles be associated with doorway modes. These may be understood as 
short-lived collective excitations mediating the information transfer. This 
doorway-mode concept might be of some relevance in the foundation of so- 
called extended irreversible thermodynamics (EIT), which has found 
increasing interest recently (see, e.g., Ref. 46). In fact, assuming the number 
of microscopic poles is just n, then one easily convinces oneself that the 
contribution of the 2n poles may be taken into account exactly in an 
autonomous system of n differential equations of second order of the type 
considered in EIT, the so-called relaxation terms directly corresponding to 
the doorway modes, so that the Maxwell-Cattaneo (49) equations, e.g., are 
simply a consequence of the decay of the latter. Moreover, the fact that 
EIT predicts a finite velocity of the propagation of thermal disturbances is 
understood by noting that the response of the system to a macroscopic dis- 
turbance takes place via the excitation of doorway modes. The details of 
these considerations will be given elsewhere. 
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4. GENERALIZED G R E E N - K U B O  RELATIONS OF THE 
T I M E - L O C A L  PICTURE 

One of the main aims of any theory of irreversible processes consists in 
giving explicit expressions for macroscopic quantities in microscopic terms. 
In the convolution picture (CP) the transport kernel M(t) or 35~(z) is con- 
sidered as the macroscopic quantity of interest, since it may be interpreted 
as the matrix of generalized transport coefficients, which are time- or fre- 
quency-dependent, respectively. Equation (2.15), therefore, may be inter- 
preted as a generalized Green Kubo relation expressing M i~ as a 
correlation function of projected microscopic currents. 

However, as discussed above, the decay of the long-lived modes is 
completely determined by the quantities I (+) and A (+), so that in particular 
i (+/is the actual matrix of macroscopic transport coefficients. The aim now 
consists in finding convenient expressions relating I (+) and A (+~ to the 
correlation matrix. 

4.1. Der ivat ion of General ized Green-Kubo Relations of the 
Time-Local  Picture 

Let us assume that there is a gap between macroscopic and 
microscopic singularities, i.e., there exist different time scales in the system. 
Then, the straight line C figuring in Eq. (3.1b) may be deformed in the way 
given by Fig. 2, so that we may write 

and 

d z  i - t ~  
- yMa e C(z) (4.1a) 

d z  i t  ~ c(m)(t) = JMi~e-~C(z) (4.1b) 

where Ma is a closed contour encircling counterclockwise just the 
macroscopic singularities, whereas Mi is a (straight) line passing between 
the macroscopic and microscopic singularities. Now, for t = 0 we obtain 
from Eqs. (4.1a) and (2.25) 

r dz 
A(+)= - ~rMa=-- (~(Z) (4.2) 

Considering C(+)(t), we obtain in the same way 

dz 
2~' :=I(+)A(+)= ~;Ma~--s (4.3) 
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(a) (b) 
Fig. 2. The deformation of (a) the contour ~2 into (b) the contours Ma (circle) and Mi 
(straight line). The positions of the microscopic and macroscopic poles are identified by the 
crosses. The case of a single observable is considered, the representation of the general case 
resting upon the spectrally resolved expression (3.12), i.e., the figure represents either one of 
the n terms occurring in Eq. (3.12). The derivations in the text are to be understood in this 
sense. 

defining a new quantity 50, which will be shown in a further paper to play 
the role of the Onsager kinetic coefficient in the generalized irreversible 
thermodynamics to be developed there. 

Equations (4.2) and (4.3) can be reformulated in such a way that a 
direct expression for the dissipative quantities 
obtained, where 

~ = i Q + L .  oil, A( + ) = F + F (+), 

Using - J~(z) = X(O) + izX(z), we obtain first 

~a. ~ i r  and F (+~ can be 

F (+)= O(~) (4.4) 

dz 1 [C(z) + C(0)] 
d ( + ) = i  OM~ 2--~ Z 

(4.5) 

If we now introduce a new contour Ma chosen to encircle the macroscopic 
singularities and the point z = 0, we may rewrite this by means of Eq. (2.6), 

F ~+)- - i  ~ dz 1 C(z) (4.6a) 
- G 7  

or, using 

we have 

~ d z  z-2=O 

dz 
F (+)= ~ - - ~ z  2~(z) (4.6b) 
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By similar manipulations we obtain from Eq. (4.3) 

dz z-  @(z) (4.7) 5e~r = i ~ ~-~ 

The matrix of transport coefficients U, where pr= I I +1_ if2F-~, 

I(+)=2"('A (+)-~= ~ ~ ( - F  1F(+t)~F I (4.8a) 
n=0 

is obtained from Eqs. (4.6) and (4.7) as 

rt=l 

du u_2~(u ) f ~]~ (4.8b) 

the series being rapidly converging for small ~, since F(+t=O(~) (see 
below). 

Equations (4.6b)-(4.8) express all of the macroscopic quantities figur- 
ing in the time-local picture (TLP) in terms of C(z), i.e., in terms of 
correlation functions of microscopic currents. We therefore shall call them 
generalized Green-Kubo relations of the TLP. 

It is interesting to note that we may replace in Eq. (4.7) ~ by its 
microscopic part d? (m/. In fact, using Eq. (3.14), we find 

~ Z2 
~,(+t= _ i M,k Hk (4.9) 

k=l Z--ZM,k 

so that by means of 

~ d z [ z ( z - - z M , k ) ]  ~ = 0  

we conclude 

dz z @ + / ( z ) =  0 

and hence 

(.,c 
dz z_@m)(z) = _~ /~ , (0 )  = _ Jo dt 5('~')(t) ~eir= i ~ ~ 

since C=  ~(+/+ ~(,,)and ~(m)(z) has no singularities inside Ma. 

(4.10a) 
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In an analogous way, we also obtain from Eq. (4.6b) 

= i d ~(~ ) ( z ) I~=o  

= - f ~  dt tC('~l(t) (4.10b) 

In view of Eqs. (4.10), (2.23), (2.25) one may say that the behavior of C(t) 
is completely determined by c(m)(t), which is microscopically based. In CP 
the fact that C(t) is given in terms of M(t) has been widely used for getting 
approximate expressions for C by modeling M. The corresponding 
approach in TLP would consist in directly modeling C Iml, fitting the 
parameters with the short-time behavior or corresponding frequency sum 
rules as usual. This is as general as in CP, but has the additional advantage 
that one obtains C directly and need not solve Eq. (2.14) or carry out the 
inverse Laplace transformation of Eq. (3.4). 

4.2. Remarks  on Genera l i zed  G r e e n - K u b o  Re la t ions  
in CP and TLP 

In order to discuss the difference between the generalized Green Kubo 
relations (GKR) of CP and TLP, we note that although both relations 
express the macroscopic quantities in terms of the fast or irrelevant part of 
the microscopic motion, the way in which this is achieved is different. In 
the CP, the matrix of frequency-dependent transport kernels M(z) is given 
by correlation functions of projected microscopic currents, i.e., the 
systematic or slow part is directly projected out of the microscopic motion. 

In the TLP relations given above, 5 ~ for example, is expressed 
directly in terms of C, i.e., in terms of correlation functions of the full 
microscopic currents obeying Hamiltonian dynamics, the slow part being 
taken away here by the contour integration. 

The fact that the above GKR are directly formulated in terms of the 
correlation functions is clearly an advantage from the computational point 
of view, since the latter can be evaluated by standard methods such as 
cluster or diagram expansions. This is not the case for 3~(z) because of the 
appearance of the projected propagator. Moreover, it should be mentioned 
as a further advantage that Eqs. (4.6) and (4.7) directly yield the "memory" 
renormalized quantities, i.e., the real decay constants, whereas these are 
obtained in the CP only from the solution of Eq. (2.29). 

822/46/1-2-24 
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The differences between the GKR of CP and TLP vanish if we con- 
sider the particular case of very slow processes for which the lifetime effects 
disappear. As is well known (cf. Ref. 43, w in this case the generalized 
Green-Kubo relation reduces to the conventional one, which expresses the 
transport or kinetic coefficients directly in terms of time correlation 
functions. It will be instructive to rederive this result from the relations 
given above. 

4.3. C o n s o r v e d  Q u a n t i t i o s  

Let us assume there is a slowness parameter q, so that we may write 

A~--qJk(q) ,  k =  l,...,n (4.11) 

where Ak = iLA~ and Jk(0) • 0. This means that A k is a conserved quantity 
in the limit q = 0. Using Eq. (4.11), we write 

~(z)  = q2Q(q, z) (4.12) 

where Q(q, z) is the analytical continuation into the lower half-plane of the 
matrix of current-current correlation functions defined by 

i 
(J(q) l  ~ - L  IJ(q) + ) '  Im z > 0 (4.13) 

Introducing (4.11) and (4.12) into (4.6b) immediately yields 

F ( + ) = O(q 2) (4.14) 

Analogously, we obtain from (4.7) 

~air = O(q2) 

Now, let us assume for the time being that the observables A~ are all even 
with respect to time reversal, so that Q = 0. Using Eq. (4.8), we find 

/ir = ~irff-- 1 + O(q4) (4.15) 

and 
i (+)=  Iir = q2[+ O(q4) (4.16) 

which defines/.  Now, using Eq. (2.33), we find 

~(+)(Z) =q4 / - - - - -~  A(+) 
z + iq2[ 

so that the contribution of the macroscopic poles of ~ to the contour 
integral of Eq. (4.7) is seen to be of order q4. This means that for q suf- 
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ficiently small but fixed, we may shrink the contour Ma in Eq. (4.7) to a 
circle around z =  0 which no longer contains the macroscopic poles. The 
error committed in this way obviously is just of order q4. Thus, we obtain 
from Eqs. (4.7), (4.15), and (4.16) U=q2Q(q ,  0) + O(q4). Now we may let 
q ~ 0 i n Q ,  so tha t  

[ =  lim Q(q, 0) + O(q 2) (4.17) 
q ~ O  

Note that Q(q, z) is obtained from Eq. (4.13) by way of analytical con- 
tinuation, so that, for finite q, Q(q, z) is still analytic around z = 0  and 
(4.17) is well defined. If, however, we want to express i in terms of the 
explicit expression given by Eq. (4.13), we may use that 

Q(q, 0)=  lim ~J(q)] i 
:.to ~ IJ(q) + ) 

so that finally we obtain 

[ =  lim lim {J(q)l i q~O zlo ~ - L  IJ(q)+ ) + O(q2) (4.18) 

which is the well-known expression defining the matrix of transport coef- 
ficients of conserved quantities in terms of time correlation functions. 

The more general case where f2 r 0 can be treated in a similar manner. 
However, since f2=O(q) ,  the macroscopic poles now also contribute 
terms, which are of order q2 and q3. These must be accounted for explicitly 
when the contour is shrunk in the sense explained above. As a result, one 
obtains 

[ =  lim lim (Jd(q)] i q~o _-+o ~ -  L Ijd(q)+ ) (4.19) 

where J" is as usual the dissipative part of the current, i.e., we have 

qjd( q ) = i( L - (2 )A (4.20) 

instead of Eq. (4.11 ). 

5. R O U T E  TO M I C R O S C O P I C  C A L C U L A T I O N S  

The generalized Green Kubo relations (GKR) derived in Eqs. (4.6) 
(4.8) may be used for carrying out microscopic calculations of macroscopic 
quantities 50, I (+), A (+t in starting directly from the explicit expression 

i iL 2 
~(z) = -<2E ~ IA + > = -<A]  z -  L IA + )  (5.1) 
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valid for I m z > 0 .  Standard methods such as perturbation, cluster, or 
diagram expansions as applied to Eq. (5.1) typically yield a series of the 
structure 

�9 ~ ~ ~m(z) (5.2) C(z)  F t = ig2 + z m 
m = O  

where the coefficient f u n c t i o n s  ~m(Z) are related to definite microscopic 
events as explained below and f2 and F [cf. Eqs. (2.6) and (2.11)] have 
been introduced for later convenience. 

Let us consider for the sake of illustrating Eq. (5.2) the case of a gas of 
classical particles interacting via short-range forces. Quite naively, one 
might be tempted to expand Eq. (5.1), as 

~ ( Z ) = - - i  ~ z- ("+l l ( .d tLnlz i+ ) 
n = O  

which, however, does not exist for any value of z, since from L = Lo + LI 
and [Lo, L~] r  we may conclude that (A] L n+~ 14 + ) = O(n!).  Instead, 
one must use conventional many-body techniques for evaluating Eq. (5.1). 

For instance, by applying the Green-Cohen cluster expansion techni- 
que to the N-particle propagator ( z - L )  1 in Eq. (5.1) we readily arrive at 
Eq. (5.2). Thus, bo(t ) is easily identified with the contributions due to a 
single binary (or a genuine multiple) collision, so that bo(t) decays rapidly 
on a time scale given by the collision time tc and bo(z) is analytic for Izl ~< 
O( t 7 l ) indeed. 

Besides these basic events, there are also uncorrelated sequences of 
such events. Thus, the contribution of m binary collisions, e.g., is contained 
in/Sin+ ~(z) in (5.2), where bin(t) again decays on the time scale given by t,.. 
Of course, there are many more contributions to (5.2). Of these, the so- 
called ring events, i.e., correlated sequences of binary collisions, lead to 
long-time tail phenomena, which need special treatment, as briefly sketched 
in Section 5.3. 

The occurrence of terms that behave as z m, m > 0, for z --~ 0 is usually 
called the problem of secular divergences and hinders the use of expansion 
(5.2) in conventional GKR, which involve z--* 0. This problem usually is 
circumvented by introducing the memory function formalism, which 
corresponds to a summation of Eq. (5.2) after which z --, 0 can be carried 
out in most cases. However, the appearance of the projected propagator 
[-cf. Eq.(2.13b)] in M ( t )  or M(z) hinders the application of 
straightforward many-body techniques, so that M(z) is not as easily 
expressed in microscopic terms as ~(z) or ~m(Z). 
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The problem of secular divergences and hence the necessity to 
introduce M does not arise in the present theory since our GKR (4.6)-(4.8) 
involve mesoscopic values of z only, i.e., where O(tR)<<. [z] 1<<. O(t,.). For 
these z, the series (5.2) may well converge, so that our GKR allow us to 
express I (+), 5~, and F (+) directly in terms of the bm and hence to relate 
the former in a direct way to the microscopic dynamics of the system. 

5.1. General  S c h e m e  for  M i c r o s c o p i c  Calcula t ions 

Let us assume for the time being that Eq. (5.2) is uniformly converging 
for some mesoscopic values of z, i.e., inside some annulus U where r ~< 
]zt <~R, r = O ( t ~ ) ,  and R = O ( t  c 1). Moreover, let us assume that bin(z) is 
analytic for Izl ~< i .  Then (5~ we may use Eq. (5.2) in our GKR (4.6)-(4.8) 
and evaluate the sums term by term. Thus, we obtain the desired relations 
a s  

and 

LP = - ~:: o -~.. b m ;,~ (5.3) 

oo 1 bm.m+l F (5.4) F<+)=i  ~ ( m + l ) !  ' 
r n = 0  

[<+ ) = _ 

x - i  (P 
k ~ O  p = O  

where we have used the notation 

1 )k 
+ 1)! bn;P+l (5.5) 

f . ,  = llrn ~ ~ f ( z )  = i n dt t " f ( t )  

so that bin;,, are the Taylor coefficients of ~m(z), i.e., 

Note that we have the order-of-magnitude estimate 

b m : o = O ( R  ~ R=O( t~ :  ~) 

(5.6) 

(5.7a) 

(5.7b) 

due to a theorem of Cauchy. (sl) 
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Equations (5.3) (5.5) are the desired expressions relating the 
macroscopic parameters to the coefficient functions ~,,(z), the b,,,;n 
corresponding to moments of bm(t) accoding to Eq. (5.6). 

For applications the following order-of-magnitude estimates are of 
utmost importance. Upon introducing Eqs. (5.7) into Eq. (5.2), we find, for 
Iz[ ~>r, 

This is a Taylor series in terms of u = z ~. Hence, we may apply Cauchy's 
theorem of Taylor coefficients (51) again to obtain 

Using ~ f J = O ( t R  1 ) 
R = O(t ,  1), 

b,,,:o = bo ;oO( tR")  (5.8) 

and (5.7b), we find, observing r = O ( t ~  1) and 

n r e + l )  b,,:,, = O(t, . / t  R (5.9) 

This relation is to be understood in the sense that it yields the asymptotic 
behavior of bin:,, for t , . ~ 0  and t R ~  ~ .  In this sense, Eqs. (5.3) and (5.4) 
obviously represent expansions in ascending order of 4 = t j t R  and Eq. (5.5) 
can be rearranged into such an expansion, which we call a t ime scale 
expansion (TSE) in the following. TSEs have proved useful recently in 
several branches of statistical physics, since ~ is a universal parameter, 
which is very small for many processes of interest, so that TSEs usually are 
rapidly converging. 

If microscopic and macroscopic time scales are sufficiently well 
separated so that terms of order ~, i.e., lifetime effects, may be neglected 
altogether, one obtains the very simple result 

~ F -  1 = i I + / = -bo:o (5.10) 

Neglecting lifetime effects corresponds to taking the so-called Markovian 
limit in the CP approach. Hence, if one is allowed or willing to work in this 
limit (as is very often done in practice), one obtains the very simple result 
that in Eq. (5.2) one simply has to drop all terms that are diverging for 
z ~ 0 and consider the remainder at z = 0. 

Correction terms over this rule are easily obtained from Eqs. (5.3) 
(5.5), for instance, 

5OF - '  = -bo; o - bl: 1 -'[- 0(4 2) (5.1 la) 

F(+t F l = i b o ; l + O ( ~  2) (5.11b) 

I (+ ~= -bo:o - bl;l + ibo;obo;l + 0(4  2) (5.1 tc) 

where lifetime effects are included in leading order here. 
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An important special case of Eq. (5.2) arises if the coefficient functions 
obey the factorization property 

i~)m(Z ) = [ i 'bo(z) ] m + l (5.12) 

Then, we obviously may rewrite the above expressions in terms of the 
Taylor coefficients b0;m of bo(z) alone. For example, we obtain instead of 
Eq. (5.11c) 

I ( +' = -b0: o - ibo, b0: o + O(~ 2) (5.13 ) 

since b,~ = i(bo, bo:0 + bo:obo,). Higher order terms of the TSE are obtained 
from Eqs. (5.6) and (5.12) by grouping together all terms with an equal 
number of factors. The above results also allow one to establish explicitly 
the connection between CP and TLP quantities. In fact, if (5.12) holds, 
Eq. (5.2) may easily be resummed to yield 

so that, from comparing with Eq. (3.4), we obtain 

bo(z) = M(z) (5.14) 

As a consequence of Eq. (5.14) we may use Eqs. (5.3), (5.4), and (5.6) 
directly for expressing •, F (+), and I (+) in terms of 2~r(z). In particular, 
Eq. (5.6) yields in this way the solution of Eq. (2.29). This has been 
obtained by several authors, (3~ and our result can be shown to agree 
with the known results term by term. 

The expressions (5.3) (5.5) and (5.11) are valid in full mathematical 
rigor provided only Eq. (5.2) is uniformly converging inside some annulus 
r~< ]z[ ~<R and that Eq. (5.7a) exists for Izl ~<R. Moreover, our set of 
observables A has to be a complete one, i.e.. the number of macroscopic 
poles agrees with the number of observables. This is a general requirement 
both in CP and TLP. A criterion for checking this point will be given 
below Eq. (5.20). 

5.2. Laurent Series Expansion of Correlation Matrix 

Additional insight into expansions of the kind (5.2) can be gained by 
introducing the Taylor expansion (5.7a) of bm(z) into Eq. (5.2). By con- 
veniently rearranging the resulting expression, one obtains a series in 
positive and negative powers of z, 

C(z) = ~,z r' (5.15a) 
~ l  - -  c O  
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Using 

~ ( z )  = - i D F  + i z F -  zZ(~(z) 

one obtains correspondingly 

O(z)=  ~ ~nz ~ (5.15b) 

Equations (5.15) obviously are Laurent expansions, which represent ~ and 
inside the annulus U passing between the macroscopic and microscopic 

singularities (cf. Fig. 3). 
From the theory of complex functions we recall that Laurent's expan- 

sion inside its annulus of convergence is unique, uniformly converging, and 
may be differentiated and integrated term by term. The coefficients are 
obtained according to the standard rule, 

dz (n 
~ : c , ~ i z  +l)~(z) (5.16) 

where C' denotes a closed contour, which lies entirely in the annulus and 
encircles the origin counterclockwise. 

Fig. 3. The annulus U (shaded area) as introduced in the text. In the case of several obser- 
vables the figure is to be understood as explained with regard to Fig. 2. 
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The existence of the Laurent expansions (5.15) is hence guaranteed if 
there is a gap between the macroscopic and microscopic singularities and 
vice versa. If using the CP approach, this means that Eqs. (5.15) exist if 
M(t) has the decay properties proposed in Section 3. Laurent's expansion 
may be split into its regular and principal parts. Accordingly, we may 
write, e.g., 

C(z)= ~ c~.z'+ ~ . z ' = ' C ' ( + l + C  (m) (5.17) 
n =  1 n=O 

so that the principal (regular) part corresponds to the macroscopic 
(microscopic) part of the correlation matrix [cf. Eq. (2.23)]. Equation 
(5.17) may be obtained by using Eq. (5.16), 

i 
C(+)= (5.18) z+ii(+) A(+) 

and the fact that ~ ( m )  has no macroscopic singularities. According to Eqs. 
(5.17) and (5.18), the macroscopic information is fully contained in the 
principal part of the Laurent expansion of C(z). On the other hand, we find 
from our GKR (4.6)-(4.8) and (5.15a) 

LPir = - [0 ,  F ~+)= i~1 (5.19) 

so that the complete macroscopic information is contained in the coef- 
ficients [o, ~1 of the regular, i.e., microscopic part ~(m) of ~. Note that 
Eq. (5.19) is in complete agreement with Eq. (4.10). Exploiting the proper- 
ties of the Laurent expansion, we may now formulate a criterion of 
reliability of the approach to microscopic calculations as given in Sec- 
tion 5.1. By means of Eqs. (5.15a), (5.16) and (5.18) we easily derive for 
n~>l 

f dz ( . _ l ) ~ ( z )  = _(_ii{+))n ~ (5.20) z 

Then, using Eqs. (5.3) (5.5) and introducing Eq. (5.2) into Eq. (5.20), we 
may derive criteria that t h e  bm must obey. This procedure is greatly sim- 
plified by using Eq. (5.9) to obtain corresponding TSEs. In lowest order, 
we thus derive in the limit of small 

ibm:o = (ibo;o) m + 0(3) (5.21) 

which agrees with Eq. (5.12) taken at z = 0. 
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5.3. Long-Time Tail Phenomena 

In practical applications the set A in many cases is not a complete one. 
In fact, given a primitive set of slow variables A1 ..... An one can always 
combine these into so-called multilinear variables, which are also slow. If 
these are explicitly included into A, the present theory is applicable. If not, 
one observes an additional spectrum of modes. In an infinitely extended 
system this spectrum is a continuous, one so that, besides the macroscopic 
poles, we also observe branch cuts in M(z) or C(z) corresponding, e.g., to a 
zl/2 behavior in a three-dimensional fluid. These branch cuts typically begin 
at z = 0 or at a hydrodynamic frequency and may extend to z = oo. Hence, 
our theory is not applicable immediately, since there is no annulus U inside 
which C is analytic. However, many-valued functions are studied best on 
the complete Riemannian surface, which, for z 1/2, say, consists of two sheets 
with a branch point at z = 0 corresponding to an algebraic singularity. 

If represented in this way, C(z) displays both poles and algebraic 
singularities as macroscopic singularities, which again are separated by a 
gap from the microscopic singularities. Accordingly, instead of Eq. (2.23), 
C(z) may now be split into three different terms corresponding to the decay 
of transients (doorway modes, e.g.), the decay of macroscopic modes 
governed by the autonomous macrodynamics, and the long-time tail 
phenomena contributed by the algebraic singularities. 

The gap between macroscopic and microscopic singularities allows us 
to modify most of the results of the present paper so as to include long- 
time tail phenomena. In fact, Laurent's expansion and Eq. (5.2) are easily 
extended to cover the case of algebraic singularities by allowing for frac- 
tional powers of z. From this, as will be shown in a subsequent paper, (53) a 
scheme for carrying out microscopic calculations may be developed much 
in the same way as in Section 5.1. 

It is instructive to discuss the relation between CP and TLP 
approaches in this context. We note that with long-time tails occurring, 
M(z) also has an algebraic (i.e., macroscopic) singularity. Thus, M(z) is 
not purely microscopically based. Moreover, Eqs. (2.28), and (2.29) have 
no solution, whereas the corresponding solutions of the dispersion relations 
[cf. Eq. (3.13)] and hence I (+/ well exist. Then, by applying the theory of 
residua to Eq. (3.4) one arrives at the splitting of C(t) into the three dif- 
ferent terms mentioned above. These are mixed up in the CP equations of 
motion (2.14), and hence in the notion of the frequency-dependent trans- 
port coefficients, in an intricate way, whereas we prefer to restrict the 
notion of transport to the autonomous macrodynamics corresponding to 
the decay of macroscopic modes. 
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6. G E N E R A L I Z E D  G R E E N - K U B O  R E L A T I O N S  IN 
T I M E  R E P R E S E N T A T I O N  

In Sections 4 and 5 we have derived generalized Green-Kubo relations 
(GKR) and corresponding time scale expansions (TSE) which directly 
relate transport quantities to ~(z). However, these formulas are not 
immediately applicable if the correlation functions are given in time 
representation as a result of a measurement, for example. Therefore, we 
shall now derive a TSE for I ~+t, Y,  and A ~+) in time representation. This 
also will provide us with a way for relating I(t)  [cf. Eq. (2.10)] to the 
short-time behavior of the time correlation functions. 

Let us consider the case again that Q = i C ( 0 ) = 0  and use Eq. (2.10), 
i.e. (to = 0) 

I ( t ) = U ( t ) =  C(t) C ~(t) (6.1) 

Now we write 

;o C ( t ) =  dt' C(t ')  (6.2) 

and, using Eq. (2.6), 

: I  

C(t) = F +  J0 dt' (t - t') C(t ')  =: F +  g(t) (6.3) 

which is easily proved by partial integration. On the other hand, we obtain 
from using Eqs. (2.23), (2.25), and (4.10) in Eq. (6.3) that 

g(t) = O(t / tn)  (6.4) 

which is valid for 0 < t < t R. 
Thus, for not too large t we may write 

I(t)= ~ l.(t) 

where 

I . ( t ) = ( - ) " + ' f o d t ' C ( t ' ) F  ' d t " ( t - t " ) C ( t " ) F  1 (6.5) 

which by virtue of Eq. (6.4) is already the desired TSE. In order to find the 
asymptotic value I (+) [cf. (2.17)], we assume that the time scales given by 
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t, and tR are sufficiently well separated that we may find a time t ~ say, that 
may be of the order of several to, so that 

I ( t~  (+)= ~, In, In :=In(t ~ (6.6) 
n=0 

with any required accuracy. Then, we obtain from Eq. (6.5), for example, 

t o 

I ~  - f o  dt' C(t') F -1 

t o 

to fo dr" t") F 1 /1= +Jo dt' (t o -  C( t ' )F-IC( t  ") (6.7) 

For obtaining the related TSE for F(t), where 

A(t) = F+ F(t) := er 

so that F(+)=lim,~oo F(t), we use Eq. (6.3), from which 

F ( t ) =  g(t) + 
(I(+ )t)" 

n----Y---. [1 + g(t)] (6.8a) 

Now, introducing I (+1 of Eq. (6.6) and collecting the terms that contain an 
equal number of correlation functions C yields the TSE for F(t). 

For example, we obtain for the asymptotic value F l +) in lowest order 

r  0 

F (+) = F(t ~ = - jo dr' t'C(t') = O(~) (6.8b) 

For 5r = I ( +)A( + 1 we obtain consequently 

= - l o  ~ I -  Io ~ ~ ( t ' )+O(~2)  ] (6.9) LP dt' C(t') 1 t~ ~ dt" 

where lifetime effects are included explicitly in order of 3. The above for- 
mulas relate the asymptotic values of pertinent macroscopic quantities to 
the short-time behavior of the time correlation functions ~(t), which may 
also be expressed in terms of current-current correlation functions. The 
expansions are obtained as TSE, where, for example, 

I,,+l = / , [ 1  + O(~) + O(t~ (6.10) 

Thus, if we include only a finite number of terms, we may not let t o --* oo in 
these series. Instead, we have to choose t o sufficiently large so that (6.6) is 
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valid and consider a sufficient number of terms so that convergence is 
achieved, the number of terms necessary increasing for increasing t o 
because of Eq. (6.10). 

The above TSE are valid for the special case f2 = 0, i.e., that all obser- 
vables Ak, k =  1 ..... n, are even with respect to time reversal. The more 
general case may be treated essentially in the same way if we repeat the 
above derivations in a kind of interaction representation obtained by 
replacing C(t) with Cw(t)= da'C(t) and using 

exp(if2t)exp(-I(+)t)=exp(tlf~dt'lw(t') ] 

where I~v(t)= eia'Ue ia,. The details will be given elsewhere. 
Applications of the above expressions may be found in Ref. 40, where 

Eq. (6.7) is evaluated in the special case of kinetic theory. It is shown there 
that the role of I~ consists in cancelling the secularly divergent contribution 

t contained in I o and to produce the correction term to the Boltzmann 
equation, which arises from the finite duration of a binary collision and 
was found earlier by several authors (cf. Ref. 48). 

7. S U M M A R Y  A N D  C O N C L U S I O N S  

In the present paper, we considered systems for which two (or several) 
different time scales exist, corresponding to "slow" (tR) and "rapid" (tc) 
degrees of freedom. In the convolution picture (CP) this implies the decay 
property (2.18) of the memory kernel M(t) provided set A is complete in 
the space of slow variables, which we assume throughout. This might seem 
a severe restriction for applications in fluid systems where long-time tail 
phenomena are observed. However, this restriction is overcome, as briefly 
discussed in Section 5.3. 

The aim of the paper was to develop the time-local picture (TLP) of 
systems with different time scales, taking full account of lifetime (memory, 
non-Markovian) effects resulting from incomplete separation of time scales. 
The basic observation for the TLP philosophy is comprised in the additive 
splitting C(t)= C~+)(t)+ CIm)(t) [cf. Eq. (2.23)], the consistency of which 
with CP is given in Section 3. In Eq. (2.23), C Im) represents the initial slip 
of the correlation matrix C(t) resulting from the decay of transients, the 
doorway modes, e.g. Hence, the decay of C(t) or of a(t) [cf. Eq. (2.27)] is 
given at macroscopic times t >> t C by the macroscopic branch C ~ +) of C. 
The time evolution of C ~+) is completely specified by I ~+I and A I+t [cf. 
Eq. (2.25)], which are the only quantities of macroscopic interest, I ~+) 
representing the matrix of transport or decay coefficients, whereas A ~+) 
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establishes the relation between the autonomous macrodynamics obeyed 
by C (+) and the initial preparation of the system. 

We have presented a new set of generalized Green Kubo relations 
(GKR) in Section 4, which are rigorous expressions relating I (+) and A ~+) 
directly to the physical correlation functions obeying Hamiltonian 
dynamics. A typical example for the application of our GKR has been 
given in Section 5 in applying it to so-called secularly divergent expressions 
of C(z). These may arise from analyzing C(z) in terms of sequences of 
binary collisions, in which case our GKR lead in a straightforward way to 
a time scale expansion relating I/+~ and d (+) to the properties of such 
binary collisions, including lifetime effects, in-medium corrections, e.g. 

The TLP approach developed concentrates on the macroscopic decay 
properties given in terms of I (+), A (+), or ~ .  Of course, these quantities 
also can be obtained from CP [cf. Eq. (2.29)], so that the two approaches 
are equivalent in this sense. However, as shown by way of examples, (22 29) 
they may give very different results in approximations. It would be 
interesting to test this point by using our GKR, since these directly 
generate expansions (perturbation, density, or the like) for I I+l from 
corresponding expansions of the correlation matrix. 

APPENDIX .  S O L U T I O N S  OF THE D ISPERSION RELATION 
i z  = l ~ l ( z )  

Let us consider the case that our set A =  {A1 ..... A,,} consists of a 
single variable only, so that M ( t )  is a real, scalar function. We first treat 
the case that M ( t )  is given by an exponential, i.e., we put 

M (  t) = (1/tct  R) e '/'' (A1) 

t,. and tR having been defined in Eqs. (2.17). From (A1) we obtain 

Yl ( z )  = it R 1/(zt C + i) (A2) 

which may be considered as the representation of ~t(z) on the full physical 
sheet. 

The solutions of the dispersion relation (3.5), i.e., 

iz = 21~r(z) (A3) 

are given by the solutions zM, Zm of 

i 1 
Z 2 + -- Z -- - -  = 0 (A4) 

t~. tctR 
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yielding 

i i 
z M = - = - = [ 1 - ( l - 4 ~ ) ~ / : ]  = -- ( 1 + r  ' . ' )  (A5) 

zt,~ tR 

and 

i i 
[1 + (1 - 4~)~/2] = - v -  (1 -- ~ -  ~.2 . . . .  ) (A6) zm - 2t,. r,. 

Thus, the actual decay or transport coefficient is 

it+~=__l [1_(1_4~)1/2]=_1 (1+g+2~2 + )  
2tc tR 

(A7) 

For the present case, we may also calculate explicitly the residue of (~(z), 
which after some manipulations may be written as 

Res(z~4) = i z , ~  - i ( 1  + ~ + 3 ~ 2 +  ..-) (A8) 
Z m - -  Z M 

and 

Res(z , , , )=  i z M _ i ( ~  + 3~ 2 + o-.) (A9)  
Z M - -  Z m 

Using (A8) together with Eq. (3.8), we obtain therefore 

U + )= - i  Res(zm) = ~ + 3 ~  2 -k- ' "  (A10) 

which may also be obtained by using Eq. (A2) in Eq. (5.4). A physical 
interpretation of Eq. (A10) is obtained by noting that Res(z,~) just 
corresponds to the strength of the doorway mode. In the example con- 
sidered, the doorway mode is the only transient, since there is no further 
singularity even at z = oe. Thus, the doorway mode alone is responsible for 
the initial slip, which explains Eq. (A10). 

As a further example, we assume M(t)  to be given by the Gaussian 

M( t ) = (2/~ l /2t  c t R) exp [ -- ( t/tc) 2 ] (Al l )  

Introducing b=2Or~/ztR) ~ and 2v=iztc,  we obtain from Eq. (A3) for 
MEv] := M(z)  

M[v]  = b dt exp(2vt - t z) (A12) 
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Putting v = v '+  iv", we write the integral as 

o~ dt exp(2v't - t 2 + 2iv"t) 

fo = [exp(v'2)] d t e x p [ - ( t - v ' ) 2 + 2 i v " t ]  

= [exp(v'2)] dt [ e x p ( - t 2 ) ] { c o s [ 2 v ' ( t + v ' ) ]  
- - v '  

+ i sin[2v"(t + v')] } (A13) 

We are now going to show first that the dispersion relation (A13) or 

v = � 8 9  (A14) 

can have solutions only on the imaginary axis of the complex z plane, 
which corresponds to v"=O. In order to show this, we assume v is a 
solution of (A14) with v" r  Using (A13) we may obtain from (A14) the 
two equations valid for v " r  0 

v 'v"= (~/ , /-~)[exp(v'2)] dt 
v v  

x {exp[ - (t/v") 2] } cos[2(t + v'v")] (A15a) 

v"2=(~/x/-~)[exp(v '2)]  f~,v,, dt 

x { e x p [ -  (t/v") 2] } sin[2(t + v'v ' )]  (A15b) 

where ~ = tc/t R. 
Using 2~r*(z)=21~C(-z*), since M ( t )  is real, we find that if z is a 

solution of the dispersion relation, so is - z * ,  i.e., the solutions, if they exist 
at all, must lie symmetrically to the imaginary axis. This means that if v', v" 
is a solution of Eqs. (A15), so is v', -v" .  Using this result in Eqs. (A15) 
leads to two new equations 

0=f 
- - o 0  

0 = f  ~ 
oO 

dt { e x p [ -  (t/v") 2] } cosl-2(t + v'v")] (A 16a) 

dt ,, 2 { e x p [ - ( t / v  ) ]} s in [2 ( t+v ' v " ) ]  (A16b) 

which must be fulfilled simultaneously if v = v' + iv" is to be a solution of 
Eq. (A14). It is easy to show that (A16a) is fulfilled only if 2v'v"= _+k~, 



Time-Local Nonequilibrium Statistical Mechanics 387 

k = 0 ,  1, 2 ..... whereas from Eq. (A16b) we obtain the condition 2v ' v '=  
_+ [2k + 1 )/2]~c. Since these two conditions contradict each other, we are led 
to the conclusion that there are no solutions with v"va O. Thus, the only 
possible solutions correspond to z = i z "  or v=v ' ,  v '>O, where, from 
Eqs. (A12) and (A13), we obtain the equation to be satisfied by v': 

o r  

v' =---~- [exp(v'2)] foo dt e x p ( - t  z) (A17) 
~/-~ v' 

= 2 v' e x p ( - v  '2) _ .  U(v') (A18) 
1 + erf(v') 

where eft(oo ) = 1. 
The graph of the function U defined by Eq. (A18) is given in Fig. 4, 

from which we may discuss the qualitative behavior of the solutions of the 
dispersion relation (A14). We note that for ~ > ~o = 0.522, Eq. (A18) has no 
solution at all. As a consequence, the only singularity of C(z) is the essen- 
tial one at z = oo. Thus, there is no exponentially decaying distribution to 
C(t) and hence the autonomous equation (2.19) does not exist. For ~ < ~o 
we find that Eq. (A18) has exactly two solutions v'l, v~. For the case of very 
small ~ (very good separation of time scales) we find from Eq. (A18) the 
asymptotic expressions vM" =~/2. and v'm=Eln(1/~)] 1 / 2 .  . Thus, in this 
approximation the two poles of (~(z) are situated at 

zM = - i / tR ,  Zm = i(2/t~.)Eln(1/~)] 1/2 

O.6 

0.4 

0.2 

fl 
t 

0.5 I.O f.'5 

Fig. 4. The function U(v) as introduced in Eq. (A18) versus v. 

822;46;1-2~25 
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so t h a t  

Der 

zm/zM = (2/~)[ln(1/~)] ~/2 

these expressions being correct if ~ is sufficiently small, so that terms of 
order ~ and higher may be neglected. 
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